Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Clin Invest ; 53(11): e14069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525474

RESUMEN

BACKGROUND: The consumption of high-caloric diets strongly contributes to the development of non-communicable diseases (NCDs), including cardiovascular disease, the leading cause of mortality worldwide. Exercise (along with diet intervention) is one of the primary non-pharmacological approaches to promote a healthier lifestyle and counteract the rampant prevalence of NCDs. The present study evaluated the effects of exercise cessation after a short period training on the cardiac metabolic and mitochondrial function of female rats. METHODS: Seven-week-old female Sprague-Dawley rats were fed a control or a high-fat, high-sugar (HFHS) diet and, after 7 weeks, the animals were kept on a sedentary lifestyle or submitted to endurance exercise for 3 weeks (6 days per week, 20-60 min/day). The cardiac samples were analysed 8 weeks after exercise cessation. RESULTS: The consumption of the HFHS diet triggered impaired glucose tolerance, whereas the HFHS diet and physical exercise resulted in different responses in plasma adiponectin and leptin levels. Cardiac mitochondrial respiration efficiency was decreased by the HFHS diet consumption, which led to reduced ATP and increased NAD(P)H mitochondrial levels, which remained prevented by exercise 8 weeks after cessation. Exercise training-induced cardiac adaptations in redox balance, namely increased relative expression of Nrf2 and downstream antioxidant enzymes persist after an eight-week exercise cessation period. CONCLUSIONS: Endurance exercise modulated cardiac redox balance and mitochondrial efficiency in female rats fed a HFHS diet. These findings suggest that exercise may elicit cardiac adaptations crucial for its role as a non-pharmacological intervention for individuals at risk of developing NCDs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36674144

RESUMEN

Maternal high-caloric nutrition and related gestational diabetes mellitus (GDM) are relevant modulators of the intrauterine environment, increasing the risk of liver metabolic alterations in mothers and offspring. In contrast, as a non-pharmacological approach against metabolic disorders, exercise is highly recommended in GDM treatment. We analysed whether gestational exercise (GE) protects mothers from diet-induced GDM metabolic consequences and mitigates liver mitochondrial deleterious alterations in their 6-week-old male offspring. Female Sprague Dawley rats were fed with control or high-fat high-sucrose (HFHS) diet and kept sedentary or submitted to GE. Male offspring were sedentary and fed with control diet. Sedentary HFHS mothers and their offspring showed impaired hepatic mitochondrial biogenesis and morphological evidence of mitochondrial remodelling. In contrast, GE-related beneficial effects were demonstrated by upregulation of mitochondrial biogenesis signalling markers and mitochondrial fusion proteins and downregulation of mitochondrial fission protein. Alterations in miR-34a, miR-130b, and miR-494, associated with epigenetic regulation of mitochondrial biogenesis, suggested that GE is a more critical modulator of intergenerational changes in miRs expression than the maternal diet. Our data showed that GE positively modulated the altered hepatic mitochondrial biogenesis and dynamics markers and quality control signalling associated with maternal HFHS-diet-related GDM in mothers and offspring.


Asunto(s)
Diabetes Gestacional , MicroARNs , Embarazo , Ratas , Humanos , Animales , Masculino , Femenino , Sacarosa/efectos adversos , Sacarosa/metabolismo , Ratas Sprague-Dawley , Epigénesis Genética , Diabetes Gestacional/inducido químicamente , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , MicroARNs/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166526, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35995315

RESUMEN

Gestational diabetes mellitus (GDM) is associated with a high-risk for metabolic complications in offspring. However, exercise is recognized as a non-pharmacological strategy against metabolic disorders and is recommended in GDM treatment. This study aimed to investigate whether gestational exercise (GE) could modulate maternal high-fat high-sucrose (HFHS) diet-related hepatic metabolic and mitochondrial outcomes in female offspring of mothers with HFHS-induced GDM. Female Sprague-Dawley rats were fed with control or HFHS diet and kept sedentary or submitted to GE. Their female offspring were fed with control diet and kept sedentary. Hepatic lipid accumulation, lipid metabolism regulators, mitochondrial biogenesis and dynamics markers, and microRNAs associated to the regulation of these markers were evaluated. Female offspring of GDM mothers showed increased body weight at early age, whereas GE prevented this effect of maternal HFHS-feeding and reduced hepatic lipid accumulation. GE stimulated hepatic mRNA transcription and protein expression of mitochondrial biogenesis markers (peroxisome proliferator-activated receptor-gamma co-activator-1alpha and mitochondrial transcription factor A) and mRNA transcription of mitochondrial dynamics markers (mitofusin-1, mitofusin-2, and dynamin-related protein-1) that were altered by maternal GDM, while mitochondrial dynamics markers protein expression was not affected by maternal diet/GE except for optic atrophy-1. MicroRNAs associated with these processes (miR-122, miR-34a, miR-130b, miR-494), and the expression of auto/mitophagy- and apoptosis-related proteins were not substantially influenced by altered intrauterine environment. Our findings suggest that GE is an important regulator of the intrauterine environment positively affecting liver metabolism and promoting liver mitochondrial biogenesis in female offspring despite eventual effects of maternal HFHS-feeding and related GDM.


Asunto(s)
Diabetes Gestacional , MicroARNs , Animales , Diabetes Gestacional/metabolismo , Dieta Alta en Grasa , Femenino , Humanos , Lípidos , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Biogénesis de Organelos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Embarazo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sacarosa
4.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409278

RESUMEN

Mothers' antenatal strategies to improve the intrauterine environment can positively decrease pregnancy-derived intercurrences. By challenging the mother-fetus unit, gestational exercise (GE) favorably modulates deleterious stimuli, such as high-fat, high-sucrose (HFHS) diet-induced adverse consequences for offspring. We aimed to analyze whether GE alters maternal HFHS-consumption effects on male offspring's maximal workload performance (MWP) and in some skeletal muscle (the soleus-SOL and the tibialis anterior-TA) biomarkers associated with mitochondrial biogenesis and oxidative fitness. Infant male Sprague-Dawley rats were divided into experimental groups according to mothers' dietary and/or exercise conditions: offspring of sedentary control diet-fed or HFHS-fed mothers (C-S or HFHS-S, respectively) and of exercised HFHS-fed mothers (HFHS-E). Although maternal HFHS did not significantly alter MWP, offspring from GE dams exhibited increased MWP. Lower SOL AMPk levels in HFHS-S were reverted by GE. SOL PGC-1α, OXPHOS C-I and C-IV subunits remained unaltered by maternal diet, although increased in HFHS-E offspring. Additionally, GE prevented maternal diet-related SOL miR-378a overexpression, while upregulated miR-34a expression. Decreased TA C-IV subunit expression in HFHS-S was reverted in HFHS-E, concomitantly with the downregulation of miR-338. In conclusion, GE in HFHS-fed dams increases the offspring's MWP, which seems to be associated with the intrauterine modulation of SM mitochondrial density and functional markers.


Asunto(s)
MicroARNs , Condicionamiento Físico Animal , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Masculino , MicroARNs/genética , Condicionamiento Físico Animal/fisiología , Embarazo , Ratas , Ratas Sprague-Dawley , Sacarosa , Carga de Trabajo
5.
Eur J Clin Invest ; 52(3): e13596, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34120338

RESUMEN

SPECIAL ISSUE: 'FOIEGRAS-Bioenergetic Remodelling in the Pathophysiology and Treatment of Non-Alcoholic Fatty Liver Disease'. BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) emerges as significant health burden worldwide. Lifestyle changes, unhealthy dietary habits and physical inactivity, can trigger NAFLD development. Persisting on these habits during pregnancy affects in utero environment and prompts a specific metabolic response in foetus resulting in offspring metabolic maladjustments potentially critical for developing NAFLD later in life. The increasing prevalence of NAFLD, particularly in children, has shifted the research focus towards preventive and therapeutic strategies. Yet, designing effective approaches that can break the NAFLD intergenerational cycle becomes even more complicated. Regular physical exercise (PE) is a powerful non-pharmacological strategy known to counteract deleterious metabolic outcomes. In this narrative review, we aimed to briefly describe NAFLD pathogenesis focusing on maternal nutritional challenge and foetal programming, and to provide potential mechanisms behind the putative intergenerational effect of PE against metabolic diseases, including liver diseases. METHODS: Following detailed electronic database search, recent existing evidence about NAFLD development, intergenerational programming and gestational exercise effects was critically analysed and discussed. RESULTS: PE during pregnancy could have a great potential to counteract intergenerational transmission of metabolic burden. The interplay between different PE roles-metabolic, endocrine and epigenetic-could offer a more stable in utero environment to the foetus, thus rescuing offspring vulnerability to metabolic disturbances. CONCLUSIONS: The better understanding of maternal PE beneficial consequences on offspring metabolism could reinforce the importance of PE during pregnancy as an indispensable strategy in improving offspring health.


Asunto(s)
Ejercicio Físico , Enfermedades Fetales/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Femenino , Humanos , Embarazo
6.
Eur J Clin Invest ; 51(10): e13515, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33580562

RESUMEN

'Special issue - In Utero and Early Life Programming of Aging and Disease'. Skeletal muscle (SM) adaptations to physical exercise (PE) have been extensively studied due, not only to the relevance of its in situ plasticity, but also to the SM endocrine-like effects in noncontractile tissues, such as brain, liver or adipocytes. Regular PE has been considered a pleiotropic nonpharmacological strategy to prevent and counteract the deleterious consequences of several metabolic, cardiovascular, oncological and neurodegenerative disorders. Additionally, PE performed by parents seems to have a direct impact in the offspring through the transgenerational programming of different tissues, such as SM. In fact, SM offspring programming mechanisms seems to be orchestrated, at least in part, by epigenetic machinery conditioning transcriptional or post-transcriptional processes. Ultimately, PE performed in the early in life is also a critical window of opportunity to positively modulate the juvenile and adult phenotype. Parental PE has a positive impact in several health-related offspring outcomes, such as SM metabolism, differentiation, morphology and ultimately in offspring exercise volition and endurance. Also, early-life PE counteracts conceptional-related adverse effects and induces long-lasting healthy benefits throughout adulthood. Additionally, epigenetics mechanisms seem to play a key role in the PE-induced SM adaptations. Despite the undoubtedly positive role of parental and early-life PE on SM phenotype, a strong research effort is still needed to better understand the mechanisms that positively regulate PE-induced SM programming.


Asunto(s)
Ejercicio Físico/genética , Músculo Esquelético/crecimiento & desarrollo , Epigénesis Genética , Femenino , Crecimiento/genética , Humanos , Embarazo
7.
Metabolism ; 116: 154704, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33421507

RESUMEN

BACKGROUND: Maternal high-caloric nutrition and related gestational diabetes mellitus (GDM) are associated with a high-risk for developing metabolic complications later in life and in their offspring. In contrast, exercise is recognized as a non-pharmacological strategy against metabolic dysfunctions associated to lifestyle disorders. Therefore, we investigated whether gestational exercise delays the development of metabolic alterations in GDM mothers later in life, but also protects 6-week-old male offspring from adverse effects of maternal diet. METHODS: Female Sprague-Dawley rats were fed with either control (C) or high-fat high-sucrose (HFHS) diet to induce GDM and submitted to gestational exercise during the 3 weeks of pregnancy. Male offspring were sedentary and fed with C-diet. RESULTS: Sedentary HFHS-fed dams exhibited increased gestational body weight gain (p < 0.01) and glucose intolerance (p < 0.01), characteristic of GDM. Their offspring had normal glucose metabolism, but increased early-age body weight, which was reverted by gestational exercise. Gestational exercise also reduced offspring hepatic triglycerides accumulation (p < 0.05) and improved liver mitochondrial respiration capacity (p < 0.05), contributing to the recovery of liver bioenergetics compromised by maternal HFHS diet. Interestingly, liver mitochondrial respiration remained increased by gestational exercise in HFHS-fed dams despite prolonged HFHS consumption and exercise cessation. CONCLUSIONS: Gestational exercise can result in liver mitochondrial adaptations in GDM animals, which can be preserved even after the exercise program cessation. Exposure to maternal GDM programs liver metabolic setting of male offspring, whereas gestational exercise appears as an important preventive tool against maternal diet-induced metabolic alterations.


Asunto(s)
Dieta Alta en Grasa , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Condicionamiento Físico Animal/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Sacarosa/administración & dosificación , Animales , Respiración de la Célula/efectos de los fármacos , Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatología , Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/efectos adversos , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias Hepáticas/efectos de los fármacos , Madres , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...